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Numerical quadrature rules for singular integrals are presented and error bounds are 
derived. The rules are simple modifications of composite Newton-Cotes formulas. For 
singularities of type x’, ,x > - 1, the lowest order rule (modified midpoint rule) has error terms 
of order d’, d2+“, and 4’ log(1(4), where 4 is the subinterval length. The rule proposed by 
Davis for integration of the Schwarz-Christoffel equation for conformal mapping of polygons 
is shown to have error terms of the same order. For polygons with sharp corners, i.e., o( close 
to - 1, the number of integration subintervals required for the Schwarz-Christoffel equation 
can be reduced by several orders of magnitude by use of higher order rules given here. Explicit 
formulas are given for four rules of most likely utility; they are extensions of the midpoint, 
trapezoidal, Simpson’s, and d-point rules. cj 1988 Academic Press, Inc 

I. INTRODUCTION 

We shall develop modifications of composite NewtonXotes quadrature rules 
applicable to 

where f(x) is “smooth” and s(,yj is integrable, but where s(x) or some of its 
low-order derivatives may be singular. 

The rules can be utilized for an arbitrary integrand F(x) by setting 

I”” F(x) d.\ = j.” s(x)[F(x)/s(x)] dx, 
“(I cl 

where s(xj includes the singular character of F(x) and F(x)/s(x) is nonsingular. To 

581;75;*-1 

15 
0021-9991/M $3.00 

CopyrIght C# 1988 by Academic Press, :cc. 
AlI rights of reproduction in any form x-served. 



16 FLORYAN AND ZEMACH 

apply an (n + I)-point rule, as defined below, the indefinite integral of x”?(x), 
0 I m <n must be available, preferably in analytic form. Typical singular functions - - 
to which the method applies are x5(, log x, and, more generally, x”(log x)~, 
p = integer. The method may also be useful when s(x) is nonsingular, but has 
derivatives much larger than f(x). It may be considered an extension of Filon’s 
method [l, 21 for integrals proportional to sin kx, k 9 1. 

This study is motivated by interest in numerical conformal mappings of polygons 
and regions with corners, where integration of the Schwarz-Christoffel equation or 
its variants is sought. If the boundary of the region to be mapped has a corner with 
interior angle d, the method calls for integration of a function with singularity of 
type xa> a = - 1-f I$/x. The singularity is most severe for a “sharp” corner, i.e., for d 
close to zero and a close to - 1. 

To integrate over corners, Davis [3] introduced quadrature rule for integrals of 
type n(x - &)““. The integration interval was divided into subintervals of common 
length A, and on each subinterval, each factor (x- dkjak was replaced by its 
average. 

Young [4] has given singular quadrature prescriptions in terms of matrices for 
“endpoint” and “midpoint” formulas. Our point of departure is similar and the data 
in our Section 1II.A can be made to correspond with his midpoint matrices. Our 
rules are obtained more simply, however, with a rather small amount of elementary 
algebra, and we go further; in particular, we analyze and compare convergence 
rates for composite rules. Atkinson [S] found similar rules but weaker error 
bounds. His Simpson’s rule analog had errors of order A3 for s(x) = x?, while we get 
A4+’ and A4. 

The rules in I1I.A are directly transcribable to a computer program. This is also 
true of the Gauss-Jacobi approach if a routine for generating the Gauss nodes and 
weights is available (the Los Alamos routine QUAD was used for the data 
comparison if 1V.B). Sloan and Smith [6] have developed an alternative approach, 
also of potentially high accuracy, but also requiring supporting subroutines. Still 
further alternatives are noted in [Z] and in Davis and Rabinowitz [7]. 

In the next section we develop the singular quadrature rules and error bounds. 
The errors of these rules are compared to Newton-Cotes errors. Section III 
enumerates the lower order rules--comparable to the midpoint, trapezoidal, 
Simpson’s, and 4-point rules-which we believe are most likely to have practical 
utility. The modified midpoint rule is the most straightforward to apply and leads 
directly to Davis’s method. In contrast to Davis’s experience, however, we show 
that for x”-type singularities with c1 negative, error terms of order A2+a and 
A* log(A -‘) may be present. In Schwarz-Christoffel ljroblems with sharp corners 
and alphas close to - 1, the linear dependence of error on A may make this 
approach ineffective. In this case, one may pass to the modified trapezoidal rule, 
with only a slight complication of arithmetic; this would eliminate errors of order 
A ’ + Or. More generally, it may be expedient to go on to the modified Simpson’s rule 
whose error is of order A4+Or, or modified 4-point rule, whose leading error is of 
order A410gA or (l+a)-‘A4, for a<O. 
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Trefethen [83 noted that Gauss-Jacobi quadrature can provide high-precision 
integration for Schwarz-Christoffel problems. However, application of a simple 
third- or fourth-order method remains attractive because of its programming 
simplicity, if it can provide sufficient precision for the needs of the problem at low 
computer cost. 

The last section displays some numerical experiments with these rules. 

II. FORMULATION 

A. Modfied Ne\cton Cotes Quadrature Rules 

By suitable subdivision of [u, 61 and resealing, the integral (I.1 j can be represen 
ted as a sum over terms of the form 

(2.1) 

in which the only singularity of S(X) is at x = 0, Discussion in this section wil! refer 
to this standard form. 

Divide [O, l] into N subintervals of length A; ‘VA = I. Let -xi= id denote the 
initial point of the ith interval. I separates into 

Then ii = IiQ’ + Ei, where Ilo’ is the approximation to be described and Ei is its 
error. We write 

>v ~~ 1 3 -~ 1 
p - - c zy , E= c Ei, I= I’O’ + E. 

i=O i=O 

where I@’ denotes the approximation to I and E is the total error. 
We follow the Newton-Cotes methodology used by, e.g.: Isaacson and Keller :9] 

for the initial analysis. For a closed (n-t 1 j-point rule for Ii, [xi, xi+ 1] is divided 
into n equal subintervals separated by nodal points ( yk 3, yk = xi f k d/n, 0 5 k 5 n. 
For an open (n + 1)-point rule, the division is into n + 2 subintervals with 
yk = xi+ (k + 1 j A/(n + 2). (For better or worse, we retain the convention that an 
even rule (?I= even”) has an even number of subintervals, and an odd number of 
nodes). 

Assumef(xjEC”+*[O, l] ‘f 1 n is even and Y(X) E C” + ’ [O, I] if n is odd. Let M,, 
be an upper bound for If(“)(-u)i on [0, l], when it exists. 

We now formulate the rule on interval [xi, .X~ + i]. Let P,(s) be the 12th degree 
polynomial which agrees withf(x) on the nodes yk of [xi, xi+ i]. Then 
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where ~C.Y~, . . . . I’,~, x] is the (n + 1 jth-order divided difference and 

w,(x) = fi (x- ).k). 
k=O 

The explicit formula for P,(x) is 

(2.4) 

where )!‘i()‘k) = [&,(x)/lrx],=,,,. W e note a general property of divided differences: 

(d/dX)‘“f[yO,..., )),~~X]~172!f(n+n*+‘)(~i)/(ll+~z+ l)!, 

where ri is in the interval spanned by the y’s and X, i.e., ti is in (xi, xi+ 1), provided 
f(x) has the requisite differentiability. 

The singular quadrature rule for Ii is 

I!O’ = 
I s 

.‘;r + L 
s(x) P,(x) dx. 

XI 
(2.5) 

In Section III, these data are written out for the more practical cases. 
The error on the ith interval is 

Ei = jxi+' s(x)f[y,,, . . . . .I',, xl w,(x) ds. 
XI 

B. Bounds on the Errors Ei 

(1) To estimate error bounds, we treat the zeroth interval [0, A], where 
s(x) has its singularity, as a separate case. We have 

where 

e, = s ,d Is(x) IVY/ dx. 

In turn, (n~,(x)I 5 An+’ for 05~s A, so that 

(2.6) 

e,,s A”+l s ,^ Is(x)1 dx. (2.7) 
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(2) To estimate Ei for i >= 1, first suppose n is even. Define 

19 

where the plus is for a closed rule and the minus for an open rule. We have [9, 
Chap. 71 Q(xi) = d(.ui+ I) = 0 and Q(x) 2 0 for x 2 xi, for both types of rules. This 
permits, after an integration by parts, application of the integral mean value 
theorem: 

Then 

IEJ sArr+3 w,, b’(ti)l [ *+ ld5i)l* 

where 

Note that Wn is positive, and independent of i and of A. Also, put 

Then 

(3) Next, consider- n = odd. We examine only closed rules here, so that 
yn=xi+;. Analogous bounds could be obtained for odd n and open rules with 
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somewhat more effort, but the additional formulas so obtained do not seem to us of 
any additional utility. Set 

Q(x) = p (x’ - JJ,,) --I bt!,(d j dx’. 
xi 

Then Q(x) 2 0 for x zsi and the product (x- y,tj Q(x) vanishes at x = xi and 
x=xj+1. Therefore, proceeding in analogy to the case of even II, 

s 
-xi+ 1 

X Q(x) dx, xi55i5xi+l, 
xi 

where the integral mean value theorem was used. We see that 

IfCJb . ..v J’n, x](y, -x) 5 AM,, J(n + l)! 

and 

IWW-ho, . ..> ~‘a, -d(v,--+I 
= I(d/WUC~,, . ..> J’n-I, I’,] -f[Jb, . . . . in-I, -ul)i 

SM,+,/(n+ l)!. 

Hence, 

JE;l 52h An+2 
(n+ l)! 

f+‘,Cdb’(:“ijl + Is( I, 

where 

Wn=A-~“-2 s:“’ cqxj d(x - ,I,,) = -A -*-’ j;+’ w,(x) d.x. 

Again, W, is positive and independent of i and of A. For odd n, the bound on E 
appears as 

[El5 Mrz+l (n {%+A n+3 W,,Sl(A)+A’z+2 W,,S,(A)3. (2.8b) 
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C. Error Comparisons ,for the Singular Quadrature R&s and Comparison With 
Newtoiz-Cotef 

For Newton-Cotes, it is generally true that as the number N of subintervals 
increases and their length A = No- ’ + 0, the error goes like A” + ’ for even rz and l&e 
A’!+; for odd n. On this basis, it is sometimes stated that the even rules are “more 
efficient.” The error variation with A for the proposed singular quadrature rules 
resembles the Newton-Cotes behavior, but with some deviations depending on the 
singular function. 

The bounds on .S,(A) and S,(A) needed for bounds on the errors of the singular 
rules may be sought in terms of integrals over Is’(x)1 and \s(x)l. We explore this 
through a series of examples. 

(1 j Let s(xj and s’(x) be bounded by s.~, and s:~~ on [0, I]. Then e,, 
Eq. /2.7), goes like A”+’ and S,(A), S,(A) are bounded by s;~~ A ~ ’ and s:,! A ~ ’ as 
A --f 0. The error bounds, Eqs. (2.8,) and (2.8b) show that E decreases like AN’-? for 
12 even and A”+ r for IZ odd. Thus, the Newton-Cotes rate of convergence is 
reproduced (with somewhat different numerical coefficients), even if higher 
derivatives of s(x) do not exist. 

(2) Let s(s?=log(xj. Then Is(xjl and Is’(xjl are monotonic decreasing. 
have 

and hence 

SO(A)s s ; Is(f)I dt. (2.9) 

Now, Is’(t)\ is not integrable at t = 0, but we can put 

N-l 

S,(A)l Is’(A)/ + c ls’(&jl 2 Is’(A)! + A--” 1’ is’(t)/ dt. 
i=2 *A 

For the present case, 

(2.10) 

S,(A)2 A-‘, Sl(A)~A~L+A-llog(A-‘), 

and also, e,~A”+2[log(AP1)+ 11. 
The leading terms in E go like A”+ ’ log(A - “) for n even and A”+’ for n odd. 

This resembles the Newton-Cotes rate of convergence, but is slowed by the factor 
log(A-‘) for even rules. 

(3) Let s(x) = xX, cx > 0. Then s(x) is monotonic increasing and 

N-2 

S,(A)5 1 Is( + Is(l)1 S A-‘{’ Is(r)! dt+ js(l)[. 
i=l 0 

(2.11) 
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And regardless of whether s’(x) is increasing or decreasing, 

s,(A)sA-’ 16’ Is’(t)[ dt+ Is’(l)]. 

Therefore, 

&(A)~A-‘+1, S,(d)SA-‘+a. 

Also, e, -+ 0 faster than A”+ 2. Again, the Newton-Cotes rate of convergence in A is 
reproduced. 

(4) Let s(x) =Y, - 1 c ~1~0. Then both Is(x)/ and /s’(x)l are monotonic 
decreasing. Instead of (2.9), we use a bound for S, which is not singular as a + - 1: 

S,(A)5 Is( +A--’ I1 Is(t)/ dt~A”+A-‘L,(A), (2.12) d 

where 

&(A =(l+cc)-‘(l-&f”). (2.13) 

Proceeding from (2.10), we have 

To appreciate how L,(d) varies with A when c( is “close” to - 1, define a critical 
subinterval width d, by 

log(l/d,)= (1 +a)-‘, d,-exp[-(l+cr)-‘1. 

Then L,(d) is approximated by (1 t-cc)-’ for the range 0 <As A,. and by 
log(d-‘) for d,.sd < 1. Referring to the conformal mapping of a polygon to 
a line, as an example, suppose the polygon has an interior angle of 4 = 7r/6. 
The Schwarz-Christoffel integral will have a singularity of type xX, 
tl = - 1 + #/rc = - 5/6, corresponding to A, = 2.5 x 10p3. Then L,(d) will vary with 
A like log(d -I) so long as the number of integration subintervals is of the order of 
1000 per unit interval, or less. 

For this type of singularity, and n even, the dominant terms in the singular 
quadrature error derive from e, and S, and go like A”+* +a. This is inferior to the 
Newton-Cotes rate of A”+‘, especially if OL is close to - 1. For n odd, the dominant 
term in the error, deriving from S,, goes like d” ‘l&(d), which is more comparable 
to the Newton-Cotes rate of A”’ I. The even n cases are not, in general, “more 
efficient” than the odd cases. For the mid-point rule (n = 0), the dominant error 
term goes like A’+‘, while for the trapezoidal rule (II = l), it goes like A’L,(A). 
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When, however, f(s) is even about the singular point, the d” + ’ + ’ error terms for 
even y1 are absent. To see this, set (with fr even) 

f(s) = i .?p)(O)/k! + xn + yL + l ‘(,O)/(rz + 1 )! + R(x). (2.14) 
k=O 

The n + 1 terms of the sum are treated exactly by an (n + 1 )-point rule. There will 
be A “+‘+’ error terms proportional to f @+!‘(O), but for n even and f(x) even 
about x = 0, j ‘n+rJ(0)=O. Also, there are no Attf2+’ error terms from R(x) as we 
now verify. 

The d n + ’ + ’ terms came from E, and from the portion 

~iC.fl =A”‘3~~,,ls’(Si)fC,‘o, ...> Y,,, till, xig<i~.Yi+I, 

oi Ei for 1 $ t5 N- t. When R(x) is substituted for f(x) in E, and ;tJf], we get 

lEo[R]l 5 1: is(x) R[yo, . . . . yn, x] w,,(x)! du 

and 

yi[R] = A”+3W,~~‘(~i) RI”+ “(r;(jj))\/(n+ I)!, 

-~i~~iTi(ri)5xi+l, - - IlilN-1 

~owf”~+‘~(~~)=f(n+l)(0)+R(“+‘)(~~) and also,,f’“i’)(x)=f’“fl”(0)+.-if’“’~”’”’ iCl? 
05 5 ss, so that IR(“+‘)(x)l ~.YM,,+~. Then 

and 

IEoCRll SA ‘rf3+mMll+J1 + ix)-‘/(rz + 1 j!, 

l~iER1l 5Ad”+3KK+zl~‘(4,) ~i(ii)l/‘(n+ l)! 
SA “+‘w,M,+,12cts(ili)l/(n + l)!, 1 <is/V-1. _ _ 

Both these estimates lead to A” + 3 + a terms in the bound on the error in the (n + 1)- 
point rule for j; S(X) R(x) dx, but not to A”+‘+’ terms. 

III. EXAMPLES OF SINGULAR QUADRATURE RULES 

Here, we list the explicit formulas for the more useful lower order rules. We also 
draw the connection to Davis’s rule. We revert to the more general form 
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The singularity of S(X) is at an arbitrary point x,. The interval [a, 61 is divided 
into N subintervals [xi, xi + r] of width d = N-‘(h - a); and xi = a + id, 0 5 is N. 
Then 

N- I 

s(x)f(x) d.x = c Ii. 
i=O 

(3.2) 

To obtain an (n + l)th-order modified Newton-Cotes approximation Zi”) to Ii, 
the general plan is this: 

In interval [-xi, xi+ ,I, we have available the Newton-Cotes nodes yk, 0 5 k 5 n, 
and the associated functional values fk =f(yk). Let mi = f(xi + xi+,) denote the 
mid-point of the interval. The interpolating polynomial P,(x) for this interval, 
defined by Eq. (2.4) is first reduced to 

P,(x) = co + CI(X - mJ + c2(x - rni)’ + . . . + c,(x - rnj)“. (3.3) 

This, in turn, is reexpressed as 

P,*(x) = co + C,(x - x,) + C,(x- x,j2 + . . . + C,(x - x,)? (3.4) 

By setting x - mi = z and x - x, = z + (nzi - x,) and comparing powers of z, we get 
the Cs expressed recursively in terms of the c’s. The C’s depend linearly on the 
functional values fk in the interval and also depend on powers of (m,-- x,). Then 
the quadrature rule for Z, takes the form 

Z!O’ = I*‘+’ P,(x) s(x) dx = i C, j-I”’ (x - x,)~ s(x) dx. (3.5) 
XI k = 0 -rl 

To apply the (n + 1 jth-order rule, the indefinite integrals of (x - x,)~ S(X) must be 
available, preferably in analytic form, and f(x) should be of class C”+‘[U, b] for 
even n and of class C”+ ‘[a, 61 for odd n. 

A. Enumeration of Rules 

( 1) Modified midpoint rule (open l-point rule, n = 0, y0 = m,), 

I;” =f(mi) j-l+’ s(x) dx. 
xi 

(2) Modified trapezoidal rule (closed 2-point rule, n= 1, yo=xi, ~7~ =xi+ r). 
Apply (3.5) with 

C, = A -‘(fi -A,) 

cO=S(fi +h)-cl(mi-Xs)* 
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(3) Modified Simpson’s rule (closed 3-point rule: n = 2, yO = xi. j‘l = n7: ~ 
.I’? = xi+ 1). Apply (3.5) with 

C,=dp’(2fi-4f,+2fo) 

C, = A~‘(fi-,fo)-2(nz,-x,) Cl 

c,=f,-(n7i-.v,)2C2-(n7,-.u,)C,. 

(4) Modified 4-point rule (closed 4-point rule, fz = 3, jyk = si + kA/3, 0 2 k 5 3 ), 
Apply (3.5) with 

C3=(9/‘2) A-3 (f3-3f2+3fi-f,,), 

C2=(9/4)A-~(f3-fi-f,+fo)-3(m,-s,)C,, 

C,=(lj8)A~“(-f3+2~f2-2~~~+f,)-3(nzj-.u,j2C3-22(mi-.u,~)C1, 

c,= (l/16)( -j-3+9j-i+9fl -.r,,- (m,-.x,)3 c,- (nzi-.X,)2 c1- (WI-X,) C1 

B. Relation of Davis’s Rule to the Modified Midpoint Rule 

Davis’s rule applies to integrals of the type 

The integral is approximated as a sum of integrals over subintervals of common 
length: 

Ita, 6) =C ICxi7 -yi+ I 1, xiC1-x;=A, (.x-la) 

and on each subinterval, 

Iixi+ I3 xi) %A fi A~~lj-~‘~‘(I-d,!“Ldx]~ (3.7bi 
k=l -xi 

Now the average of any function j”(x) of class C’ on (xi, si+ ,) is approximated 
by its midpoint valuef(mi) to relative order A’. More precisely, 

A-’ /-X’+‘f(x)dx=f(mi)+(A’/24)f”(~i), x, < & < x, + 1. (3.8) 
* 5, 

It follows that on any interval (a, b) on which s(x) is singuiar andfk(x), k = 1, 2, . . . . 
are of class C’[a, b], the approximation 

5” s(x) n fk(x) dx = c [ [++I s(x) dx n A --I !I+’ f,(x) d-x-1 
a k j *x, k 

13.9) 



26 FLORYANAND ZEMACH 

differs from the modified midpoint rule only by error terms of order d2, and so has 
the same order of error from the exact integral as the midpoint rule. The 
approximation (3.7) to (3.6) is a special case of this. The interval may be divided 
into K segments, with each segment containing one singularity. The end points of 
these segments may be chosen, for example, midway between the singularities. On 
each segment, all but one of the (x--&)~” is of class C’ and the error terms iden- 
tified in Section II above, are relevant. 

The Davis rule has the advantage, with respect to computer programming, that a 
single general form represents the approximate integral over a subinterval, regard- 
less of the subinterval’s location relative to singularities. If one of the other rules is 
used, higher accuracy for a given subinterval size is gained, but the convenience of a 
single general form for the approximating function is lost. 

IV. NUMERICAL EXAMPLES 

A. A Straightforward Integral 

We check the error estimates of Section II by evaluating numerically the integral 

I= j’x”e-“d-x 
0 

(4.1) 

in the range - 1 <a 5 1. The value of this integral to machine accuracy (e.g., 14 
figures) might be found, for example, by integrating by parts five times and apply- 
ing the standard Simpson’s rule with 2000 integration steps. Each of the modified 
rules of Section II1.A leads to an approximate value 1”’ and an absolute error 
E= (I- I”‘). 

Results for the modified midpoint rule are shown in Fig. 1. We note that when 
s(x) remains finite in [0, 11, the modified rule retains the Newton-Cotes rate of 
convergence (a = 0.5, E/Z- A’.‘). Presence of a stronger singularity degrades the 
rate of convergence to EJI- A2 +a, as predicted in Section II, and increases the 
absolute value of the error. 

Results for different modified rules for the case of a = -0.9 are displayed in 
Fig. 2. The predicted rate of convergence d” + ’ + a for rz even (midpoint and 
Simpson’s) is clearly reproduced. The predicted rate of convergence for n odd 
depends on whether A > A, or A <A,. Since A, = 4.5 x lo-‘, the expected rate of 
convergence for the values of A shown in Fig. 2 is A”+ 1 log(A -I). This slight 
deterioration from the Newton-Cotes rate convergence of A” + ’ can be qualitatively 
seen in the case of the modified trapezoidal rule (Fig. 2). However, it is barely seen 
in the case of the modified four-point rule due to its rapid convergence. 

We note, as a general conclusion, the fact that modified rules of odd order have a 
convergence rate very close to the Newton-Cotes rules, while modified rules of even 
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FIG. 1. Relative error of the modified midpoint rule for singularity s(s) - .xX. as a function of 
singularity strength and integration step. See Section 1V.A. 

order may lose up to one order in the rate of convergence as compared to the 
Newton-Cotes rules, depending on the strength of singularity. 

B. A More Difficult E-sample 

Consider the following integral of Schwarz-Christoffel type: 

I= [l (x + o.oo1)-*.9 x-“.9(1.01 -X) -0.9 il.u. 
JO 

(4.2) 

This integral presents a greater challenge to approximation methods because 
several strong, closely spaced singularities are present. We first suggest that the 
integration interval be decomposed into subintervals such that (a) no subinterval 
contains more than one singularity and (b) the minimum distance from a subinter- 
val to the nearest singularity external to it is not less than one-fifth to one-tenth the 
subinterval width. In each subinterval, s(x) will represent the interior singularity, if 
there is one, and the nearest external singularity otherwise. This guideline, based on 
our numerical experimentation in a variety of cases, may not be optimal, but is 
certainly quite serviceable. 

Following this plan, we divide (0, 1) into four subintervals: (O,O.OOS), 
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1o-g ' ' ' J'l'l ' ' ""d c 
10-2 10-I 100 

STEP SIZE A 

FIG. 2. Relative error of various modified Newton-Cotes singular quadrature rules for singularity 
s(x) * .x-‘-~. See Section 1V.A. 

(0.005: 0.05), (0.05,0.9), and (0.9, 1). The integral over each subinterval was then 
calculated by the composite Davis rule, the composite 4-point rule, and the Gauss- 
Jacobi rule, and the results totaled to get Davis, 4-point, and Gauss-Jacobi 
estimates of I. “Composite” means that each subinterval was itself subdivided into 
N parts, and the relevant rule applied to that part. For Gauss-Jacobi, an Nth order 
rule was applied separately to each of the four subintervals. 

Table I shows error data on the 3 rules for values of N varying by powers of 2 up 



QUADRATURE RULES FOR SINGULAR INTEGRALS 29 

TABLE I 

Relative Effectiveness of Various Quadrature Mes for 
a Diflicult Singular Integral of 

the Schwarz-Christoffel Type (see Section fV.B) 

Davis rule 4-point rule Gatiss-Jacobi 

N Nodes Exor t Nodes Error I Nodes Error ? 

1 13 0.016 0.00 1 4 0.18 0 r304 
2 25 0.0043 o.ooi 8 0.030 o.cw 
4 49 8.3 x :o-” 0.002 16 o.ooore 0.0’37 
8 32 0.15 0.00 1 97 1.1 x lo-* c.003 35 2.3 x lo-’ 0.010 

15 64 0.083 0.002 193 1.1 x 10-z 0.005 64 r.7 x 10 --8 0.062 
32 128 0.042 0.004 385 8.8 x IO-’ 0.011 12s 2.j x It--! 0.10~ 
64 256 0.021 0.008 769 6.3 x 1O-E 0.02 1 

126 5i2 0.0099 0.015 I537 4.2 x 10 -9 0.03i 
36 1024 o.Ml47 0.030 3073 2.8 x 10 I0 0.083 

!024 4096 0.0010 0.118 

to 1024. For each rule and various N, Table I shows the tcrtal number of aodes at 
which evaluations off(x) are made, the relative error, and the computing time in. 
seconds (for a Cray 1). 

The Davis rule is the simplest to program, but is significantly less effective than. 
the other two. It would have looked relatively better if positive values, rather than 
-0.9 had been chosen for the singularity exponents. 

The Gauss-Jacobi quadrature is more effective than the 4point rule in terms of 
the number of functional evaluations needed for a given accuracy level, by a facto: 
of the order of 6 to 12, but less effective in terms of computer time required for d 
given accuracy level by a factor of the order of 3 or 4 for a range of cases. 
that the quoted Gauss-Jacobi computer time includes the cost of computing the 
nodes and weights; in an iterative calculation with many integrations, but few 
recalculations of nodes and weights, the comparative Gauss-Jacobi times could be 
significantly improved. Then again, the modified 4point rule, and the other listed 
modified Newton-Cotes rules, are almost as routine to program as the Davis rule. 

We do not conclude that any one of the rules examined is always the best: each 
has its advantages depending on the specific problem. 

We do expect that the rules developed in this paper can find wide application as 
efficient, easily programmed, singular quadrature rules for a variety of probiems. 
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